Mendix Expert MCP Server
A self-learning, auto-researching AI assistant that gives your AI deep Mendix expertise and grows smarter with every interaction.
About this project
This is a Model Context Protocol (MCP) server that supercharges AI assistants (GitHub Copilot, Claude, ChatGPT, n8n, etc.) with deep Mendix expertise. As of v3.5.1, ALL clients participate in universal self-learning.
Key Capabilities
| Capability | Description |
|---|---|
| Universal Self-Learning | ALL clients (Copilot, Claude, ChatGPT, n8n) get quality signals |
| REST /learn API | ChatGPT and automation tools can add knowledge via HTTP |
| Supabase Storage | 242+ entries in PostgreSQL - survives Railway restarts |
| Semantic Search | 253 vectors in Pinecone (OpenAI embeddings, 1536 dims) |
| Quality Assessment | Every search returns answerQuality and beastModeNeeded |
| Project Analysis | Analyzes your actual .mpr files (local MCP only) |
| Beast Mode | Exhaustive 5-tier research protocol for hard questions |
| Auto-Deploy | Push to GitHub → Railway deploys automatically |
Quick Example
User: @mendix-expert How do I iterate over a list in a microflow?
AI: [Searches knowledge base]
Answer Quality: strong | Web Search Recommended: No
Based on the knowledge base, here are the patterns:
1. Loop activity with IterableList...
2. Aggregate with ListOperation...
[Comprehensive answer with code examples]
Architecture Overview (v3.5.1)
┌─────────────────────────────────────────────────────────────────────┐
│ AI CLIENTS │
│ GitHub Copilot │ Claude Desktop │ ChatGPT │ n8n │ Make │ Zapier │
└───────────────────────────┬─────────────────────────────────────────┘
│ MCP (stdio) or REST (HTTP)
▼
┌─────────────────────────────────────────────────────────────────────┐
│ Mendix Expert MCP Server v3.5.1 │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Hybrid │ │ Quality │ │ Project │ │
│ │ Search │ │ Assessment │ │ Analyzer │ │
│ │ │ │ (v3.5.1) │ │ (local only)│ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │
│ ▼ ▼ │
│ ┌─────────────┐ ┌──────────────┐ │
│ │ Pinecone │ │ Supabase │◄─── Self-Learning │
│ │ 253 vectors │ │ PostgreSQL │ (all clients) │
│ │ 1536 dims │ │ 242+ entries │ │
│ └─────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
│
▼ (auto-deploy)
┌─────────────────────────────────────────────────────────────────────┐
│ Railway Cloud: https://mendix-mcp-server-production.up.railway.app │
└─────────────────────────────────────────────────────────────────────┘
What’s New in v3.5.1
- 🌍 Universal Self-Learning - ALL clients get quality signals and can add knowledge
- 🧠 REST /learn endpoint - ChatGPT and automation can store discoveries
- 📊 Quality Assessment - Every search returns
answerQualityandbeastModeNeeded - 🗄️ Supabase-first storage - 242+ entries in PostgreSQL
- 🔮 253 vectors in Pinecone - OpenAI text-embedding-3-small (1536 dims)
- 🚀 Auto-deploy - Push to GitHub → Railway deploys automatically
Last updated: December 12, 2025