Mendix Expert MCP Server

A self-learning, auto-researching AI assistant that gives your AI deep Mendix expertise and grows smarter with every interaction.

Get Started View on GitHub


Version MCP Supabase Pinecone OpenAI npm

About this project

This is a Model Context Protocol (MCP) server that supercharges AI assistants (GitHub Copilot, Claude, ChatGPT, n8n, etc.) with deep Mendix expertise. As of v3.5.1, ALL clients participate in universal self-learning.

Key Capabilities

Capability Description
Universal Self-Learning ALL clients (Copilot, Claude, ChatGPT, n8n) get quality signals
REST /learn API ChatGPT and automation tools can add knowledge via HTTP
Supabase Storage 242+ entries in PostgreSQL - survives Railway restarts
Semantic Search 253 vectors in Pinecone (OpenAI embeddings, 1536 dims)
Quality Assessment Every search returns answerQuality and beastModeNeeded
Project Analysis Analyzes your actual .mpr files (local MCP only)
Beast Mode Exhaustive 5-tier research protocol for hard questions
Auto-Deploy Push to GitHub → Railway deploys automatically

Quick Example

User: @mendix-expert How do I iterate over a list in a microflow?

AI: [Searches knowledge base]
    Answer Quality: strong | Web Search Recommended: No

    Based on the knowledge base, here are the patterns:
    1. Loop activity with IterableList...
    2. Aggregate with ListOperation...
    [Comprehensive answer with code examples]

Architecture Overview (v3.5.1)

┌─────────────────────────────────────────────────────────────────────┐
│                        AI CLIENTS                                   │
│  GitHub Copilot │ Claude Desktop │ ChatGPT │ n8n │ Make │ Zapier   │
└───────────────────────────┬─────────────────────────────────────────┘
                            │ MCP (stdio) or REST (HTTP)
                            ▼
┌─────────────────────────────────────────────────────────────────────┐
│                   Mendix Expert MCP Server v3.5.1                   │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐                 │
│  │  Hybrid     │  │  Quality    │  │   Project   │                 │
│  │  Search     │  │ Assessment  │  │   Analyzer  │                 │
│  │             │  │  (v3.5.1)   │  │ (local only)│                 │
│  └─────────────┘  └─────────────┘  └─────────────┘                 │
│         │                │                                          │
│         ▼                ▼                                          │
│  ┌─────────────┐  ┌──────────────┐                                  │
│  │  Pinecone   │  │   Supabase   │◄─── Self-Learning                │
│  │ 253 vectors │  │  PostgreSQL  │     (all clients)                │
│  │  1536 dims  │  │ 242+ entries │                                  │
│  └─────────────┘  └──────────────┘                                  │
└─────────────────────────────────────────────────────────────────────┘
                            │
                            ▼ (auto-deploy)
┌─────────────────────────────────────────────────────────────────────┐
│  Railway Cloud: https://mendix-mcp-server-production.up.railway.app │
└─────────────────────────────────────────────────────────────────────┘

What’s New in v3.5.1

  • 🌍 Universal Self-Learning - ALL clients get quality signals and can add knowledge
  • 🧠 REST /learn endpoint - ChatGPT and automation can store discoveries
  • 📊 Quality Assessment - Every search returns answerQuality and beastModeNeeded
  • 🗄️ Supabase-first storage - 242+ entries in PostgreSQL
  • 🔮 253 vectors in Pinecone - OpenAI text-embedding-3-small (1536 dims)
  • 🚀 Auto-deploy - Push to GitHub → Railway deploys automatically

Last updated: December 12, 2025


Back to top

Copyright © 2025 Mendix Expert MCP Server. Distributed under MIT License.