v3.3.0
Live API Available 24/7

Mendix Expert User Guide

Connect your AI assistant to 700KB+ of curated Mendix knowledge. Works with ChatGPT, Claude, n8n, VS Code, and any MCP-compatible tool.

Choose Your Integration

1

ChatGPT Custom GPT

๐Ÿ’ฌ
Create Your Mendix Expert GPT

Turn ChatGPT into a Mendix expert by connecting it to our cloud API. Takes about 5 minutes!

1
Go to ChatGPT

Navigate to chat.openai.com and click "Create a GPT" (requires ChatGPT Plus)

2
Configure the GPT

Give it a name like "Mendix Expert" and add this system prompt:

System Prompt
You are a Mendix development expert with access to a comprehensive 
knowledge base via the mendix-expert API. 

ALWAYS use the API to answer Mendix questions:
- Use /search for general queries
- Use /best-practice for recommendations
- Use /beast-mode for complex research tasks

Be specific, include code examples, and cite your sources.
3
Add the API Action

Go to Configure โ†’ Actions โ†’ Import from URL

OpenAPI URL
https://mendix-mcp-server-production.up.railway.app/openapi.json
4
Save and Use!

Click "Save" and start asking Mendix questions. Your GPT now has access to 700KB+ of expert knowledge!

โœ“ Example Prompts
  • "How do I create a microflow that handles errors properly?"
  • "What's the best practice for domain model design?"
  • "Show me SDK code to create an entity with associations"
2

n8n Automation

๐Ÿ”„
Add Mendix Knowledge to Your Workflows

Use HTTP Request nodes to query the Mendix Expert API from any n8n workflow.

HTTP Request Configuration

n8n HTTP Request
Method: POST
URL: https://mendix-mcp-server-production.up.railway.app/search
Body Type: JSON
Body:
{
  "query": "{{ $json.userQuestion }}",
  "limit": 5
}

MCP Server Mode (n8n v1.88+)

For full MCP integration with all tools:

1
Add MCP Server Tool Node

Search for "MCP" in the nodes panel and add "MCP Server Tool"

2
Configure SSE Endpoint

Note: SSE mode requires running the server locally. For cloud-only, use HTTP Request nodes.

3

VS Code Integration

๐Ÿ“
Query from Your Editor

Use the REST Client extension to query the API directly from VS Code.

Using REST Client Extension

1
Install REST Client

Install the "REST Client" extension by Huachao Mao

2
Create a .http file

Create mendix-queries.http in your project:

HTTP
### Search for microflow patterns
POST https://mendix-mcp-server-production.up.railway.app/search
Content-Type: application/json

{
  "query": "microflow error handling"
}

### Get best practices
POST https://mendix-mcp-server-production.up.railway.app/best-practice
Content-Type: application/json

{
  "scenario": "domain model design"
}

### Beast Mode research
POST https://mendix-mcp-server-production.up.railway.app/beast-mode
Content-Type: application/json

{
  "topic": "Platform SDK entity creation"
}
๐Ÿ’ก Pro Tip

Click "Send Request" above each request block to execute it. Results appear in a split pane!

4

Claude Desktop (Full MCP)

๐Ÿค–
Complete MCP Integration

Claude Desktop supports full MCP integration, including local project and theme analysis!

โš ๏ธ Local Server Required

Claude Desktop uses stdio transport, which requires running the MCP server locally. This enables project and theme analysis features that aren't available in cloud mode.

Configuration

Add to your Claude Desktop config (%APPDATA%\Claude\claude_desktop_config.json):

JSON
{
  "mcpServers": {
    "mendix-expert": {
      "command": "npx",
      "args": ["@jordnlvr/mendix-mcp-server"]
    }
  }
}

Available Tools (Local Mode)

Tool Description
query_mendix_knowledge Search the knowledge base
get_best_practice Get best practice recommendations
beast_mode Exhaustive research protocol
analyze_project Analyze a .mpr file (local only)
analyze_theme Deep theme analysis (local only)
add_to_knowledge_base Contribute new knowledge
5

Continue.dev

โš™๏ธ
VS Code AI Assistant Integration

Add Mendix Expert as an MCP server in Continue.dev for seamless IDE integration.

Configuration

Add to your Continue config (~/.continue/config.yaml):

YAML
mcpServers:
  - name: mendix-expert
    type: stdio
    command: npx
    args:
      - @jordnlvr/mendix-mcp-server

Then use @mendix-expert in your Continue chat to access all tools!

6

API Reference

Base URL: https://mendix-mcp-server-production.up.railway.app

Core Endpoints

GET /health

Health check and status information.

POST /search

Hybrid search (keyword + semantic). Body: {"query": "your search", "limit": 10}

POST /best-practice

Get best practice recommendations. Body: {"scenario": "error handling"}

POST /beast-mode

Get the exhaustive research protocol for complex topics.

GET /dashboard

Visual analytics dashboard (HTML page).

Full OpenAPI Spec

For complete API documentation, import the OpenAPI spec into your favorite tool:

URL
https://mendix-mcp-server-production.up.railway.app/openapi.json
7

Examples

cURL Examples

bash
# Search for microflow patterns
curl -X POST https://mendix-mcp-server-production.up.railway.app/search \
  -H "Content-Type: application/json" \
  -d '{"query": "microflow error handling"}'

# Get best practices for security
curl -X POST https://mendix-mcp-server-production.up.railway.app/best-practice \
  -H "Content-Type: application/json" \
  -d '{"scenario": "security"}'

# Health check
curl https://mendix-mcp-server-production.up.railway.app/health

JavaScript/Node.js

javascript
const response = await fetch(
  'https://mendix-mcp-server-production.up.railway.app/search',
  {
    method: 'POST',
    headers: { 'Content-Type': 'application/json' },
    body: JSON.stringify({ query: 'SDK entity creation' })
  }
);
const results = await response.json();
console.log(results);

Python

python
import requests

response = requests.post(
    'https://mendix-mcp-server-production.up.railway.app/search',
    json={'query': 'Platform SDK patterns'}
)
results = response.json()
print(results)